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When predicting sound fields in rooms such as industrial workrooms, a major
factor that must be taken into consideration is the presence of ‘fittings‘—obstacles
such as machines, work-benches and stockpiles—in the room. Besides the fitting
spatial distribution, there are two important parameters used in prediction models
to describe the fittings. One is the fitting density—a measure of the number of
fittings and of the average fitting scattering cross-sectional area; the other is the
fitting absorption coefficient. While ranges of typical fitting densities and
absorption coefficients are known, no reliable method exists for measuring or
estimating them in a given case. Furthermore, theoretical expressions for
calculating fitting density assume small fittings and high frequency. The aim of
this research was to develop and test new, improved methods for determining the
fitting density in industrial workrooms. To achieve this objective a correction
formula was derived for calculating the fitting density in the case of large fitting
dimension. The variation of fitting density with frequency was found from
sound-propagation measurements in large fitted regions. A formula to express the
relationship was determined by statistical methods. This model was validated
experimentally in a scale-model workroom and in a machine shop, with the help
of a ray-tracing prediction model.
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1. INTRODUCTION

Industrial workrooms are different from many other rooms in that they are not
empty—they are ‘‘fitted’’; that is, they contain many obstacles (machines,
stockpiles, benches etc.—the ‘‘fittings’’) which scatter and absorb propagating
sound. Fittings have a major effect on the magnitude and spatial distribution of
noise levels in an industrial workroom, as well as on the rate of sound decay with
time and, thus, on reverberation time [1].

Analytical models for predicting sound-pressure levels in industrial workrooms
exist which account for the presence of fittings. The Jovicic [2] and Lindqvist [3, 4]
models are based on the image-source method; to calculate the total sound energy,
the received unscattered and scattered energies are treated separately and then
summed. The Jovicic model [2] can be applied to long, or long and wide,
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parallelepipedic rooms with isotropically distributed fittings. The Lindqvist model
[3, 4] can be applied to any parallelepipedic room with isotropically distributed
fittings. The Ondet and Barbry model [5] is based on ray-tracing techniques.
Fittings, with representative fitting densities and absorption coefficients, are
randomly distributed within any number of predefined zones. This is the only
model which is able to account for arbitary distributions of fittings, and
non-parallelepipedic rooms with diverse absorption characteristics. Dance and
Shield [6] used a method-of-images approach to develop a model applicable to
parallelpipedic workrooms. Fitted rooms contained horizontal and/or vertical
fitted zones, in which fittings resulted in an exponential reduction with distance
of propagating sound energy.

There are three main factors which must be considered in fitted rooms, as
compared to empty rooms: the fitting spatial distribution (isotropic, localized to
a layer on the floor, etc.); the absorption coefficient of the fittings; the ‘‘fitting
density’’. The last two quantities would be expected to vary with frequency. While
the orders of magnitude of these two quantities are known [7], no reliable,
generally-applicable method is available for determining these quantities directly.
Furthermore, theoretical expressions for calculating fitting density assume small
fittings and high frequency.

‘‘Fitting density’’ describes the average frequency at which propagating sound
rays encounter fittings. Fitting density Q—defined as the product of the number
of fittings per unit volume and their average scattering cross-sectional area, in m−1,
is a very important parameter in predicting sound-pressure levels in fitted
workrooms [1]. Almost all existing prediction models use the Kuttruff
fitting-density formula [8] to calculate this parameter. The Kuttruff formula can
be written as Q0 =Stot /4V, in which Q0 is the Kuttruff fitting density in m−1, V
is the total room volume in m3, and Stot is the total surface area of the fittings in
m2. The Kuttruff formula is valid for high frequencies and for small fittings, but
is used by practitioners for all frequencies and fitting dimensions.

In summary, there is a great need for accurate, proven methods for calculating
fitting density and fitting absorption coefficient—and their variations with
frequency—in the case of large fittings. The main objective of the present research
was to develop and test improved methods for determining fitting density in
industrial workrooms. Methods have been developed based on measurements of
steady state sound-pressure level in empty and fitted environments. The methods
have been validated in an anechoic chamber, in a 1:8-scale-model workroom and
in a full-scale machine shop.

2. EXISTING MODELS OF SOUND PROPAGATION IN FITTED REGIONS

Let us review existing theory for sound propagation in fitted regions. When a
sound ray is emitted from a source in a fitted region, its propagation is affected
by the presence of the obstacles, as shown in Figure 1. When there are large
numbers of obstacles with different shapes and orientations, it becomes impractical
to describe the influence of each of them separately. Therefore, a statistical
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approach to the problem becomes preferable. This high-frequency approach,
proposed by Kuttruff [8], is based on the following hypotheses.
1. High-frequency sound waves propagate as rays (the geometrical-acoustics

assumption).
2. The obstacles are point-like scattering objects reradiating sound rays

omni-directionally. The validity of this hypothesis would be expected to depend
on the ratio of the wavelength l of the sound wave to the typical dimension
Df of the obstacle. As a general rule, one must have lQDf—that is, small
obstacles.

3. The scattering effect follows a Poisson process. This means that, if the energy
emitted by the source is discretized into sound particles, and if the fact of one
of these particles meeting an obstacle is a random event, then the sequence of
random events follows a Poisson distribution. However, it must be supposed
that the number of obstacles encountered by a particle between times t and
t+dt is independent of the number of obstacles encountered before time t.
Under this assumption, the probability Wk that a sound particle hits k obstacles
after times tk . can be expressed as

Wk (ctk )= exp(−Qctk )(Qctk )k/k!. (1)

The cumulative distribution function F(r) associated with this distribution is

F(r)=61−exp(−Qr),
0,

re 0,
rQ 0.

(2)

The number of fittings per unit volume can be expressed by n=Nf /V, where Nf

designates the number of obstacles contained in volume V. Let Sf by the average
scattering cross-sectional area of an obstacle. This is difficult to determine
accurately when the obstacles have complex shapes. The simplest solution is to
approximate the shape by a sphere with diameter d and surface area Sv = pd2. The
average scattering cross-sectional area, for high frequency, is then equal to the
visible cross-sectional area of the equivalent sphere, given by Sf = pd2/4. Therefore,
Sf =Sv /4. Consequently, in volume V, the average cross-sectional area per unit

Figure 1. A single sound-ray propagation path in a fitted region.
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volume, called the Kuttruff fitting density—also known as the scattering frequency
[2–5]—is given by the expression

Q0 = nSf = nSv /4=Stot /4V. (3)

Again, this formula is valid for very high frequency and for obstacles which are
small and spherically shaped, but it is used in most prediction methods and by
practitioners with little regard to its applicability. Note that the quantity lf =1/Q0

in metres is the mean free-path length between fittings.
Lindqvist [3] gave a formula for correcting for the possibility of overlap of

fittings in the Poisson process, based on a two-dimensional analysis. Lindqvist
supposed that there is a Poisson distribution of fittings with density Q, and
considered two identical spheres of radius R, which overlap. The probability
density of no second fitting being found within a distance r of the centre of a fitting
is f(r)=Qe−Qr. The probability function for no fitting within a distance 2R is, thus,

F(2R)=g Qe−Qrdr=1−e−2QR. (4)

From this, Lindqvist [3] found the following approximate correction formula

QL =Q0[1+ (8Q0R/3p)−Q2
0R2/2], (5)

in which Q0 is the Kuttruff fitting density. For example, if Q0R=0·1, the
correction increases the fitting cross-sectional area, and therefore the fitting
density, by 8%. Kurze [9] noted that, in many cases, the fitting density found using
equation (3) is smaller than expected, so higher surface-absorption coefficients
must be used in prediction to obtain agreement with temporal sound-decay
measurements. Kurze suggested the use of somewhat different statistical relations.
The shifted distribution is one possible candidate: in the range r0 E rQa, the
mean free-path lf becomes lf =1/Q0 − r0 where r0 is some distance. This means that
the fitting mean free-path is smaller than that calculated from equation (3) by an
amount equal to the distance r0. In the case of numerous fittings of different
dimensions, r0 can be considered to be the average radius of the fittings. Another
possibility for arriving at a reduced mean free-path length is to use the Gamma
distribution. In this case, the mean free-path becomes lf =1/Q0p in which p is the
parameter in the Gamma function G(p). For p=1 this equation is a special case
of equation (3); for pq 1, lf is less than 1/Q0, so better consistency between
absorption coefficients and measured rates of reverberant sound decay is obtained
[9].

Hodgson [10] measured noise levels in a machine shop and compared them with
ray-tracing predictions using different fitting-density values. A best-fit fitting
density was obtained which was about 40% greater than that calculated using the
Kuttruff formula.

Akil and Oldham [11, 12] concluded that it is the product of fitting density and
fitting absorption coefficient that determines the sound-propagation character-
istics in a fitted workroom. They found that the difference in sound-pressure level
in a room with fittings and without fittings is almost constant, and that the
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Figure 2. Three spheres of radius R considered in estimating the mean free-path reduction.

sound-propagation characteristics are nearly identical if one parameter is halved
and the other is doubled.

Hodgson [7] used a best-fit approach to determine fitting densities in typical
industrial workrooms with relatively low and high fitting absorption coefficients
(0·5 and 0·15, respectively) and two vertical fitting distributions (isotropic and in
a layer on the floor). With an isotropic vertical fitting distribution, fitting densities
varied from 0·07 to 0·25 m−1 with the lower coefficient, and from 0·04 to 0·125 m−1

with the higher one. With a fitting floor layer, fitting densities varied from 0·40
to 1·10 m−1 and 0·15 to 0·30 m−1 with the lower and higher coefficients,
respectively.

In summary, methods exist for estimating fitting density, but all assume small
dimension and high frequency. Some empirical information is available on typical
fitting densities.

3. THEORETICAL DEVELOPMENT

In this section, a correction formula for calculating fitting density in cases when
the fitting dimensions are large is derived, and the magnitude of the correction is
investigated.

When the mean free-path, lf0 =1/Q0, is of the same order of magnitude as, or
one order greater than, the fitting dimension, the fitting dimension should be
subtracted from the mean free-path, as shown in Figure 2. That is,

1/Q=1/Q0 −2R. (6)

Considering the dimensions of typical fittings, a further correction should be
included. In Figure 2, there is a third fitting (3) near the other two (1 and 2). If
the third fitting is dimensionless, it will not block the sound propagating from
fitting 1 to fitting 2. However, if the fitting has non-zero dimension, it does block
this path. The real propagation path will be from fitting 1 to fitting 3; it is less
than from fitting 1 to fitting 2, the mean free-path lf0.

Suppose that there is a Poisson distribution of fittings with density Q0, and
consider three identical spheres of radius R, as shown in Figure 2. From equation
(4), the probability function for no fitting within distance r is exp (−Q0r). This
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is only true for dimensionless fittings. The probability function for having a fitting
within distance r is 1−exp (−Q0r), and the probability that the fitting blocks the
free path is 2R/2pr, considering the fitting dimensions shown in Figure 2. For a
two-dimensional problem, for any position from the centre of a fitting in a region
of a circle from 0 to 2p, and distance r from 2R to 1/Q0 −2R, the probability for
the fitting with radius R blocking the original mean free-path is
2R[1−exp (−Q0r)]/(2pr). For the region 0Q rQ 2R and 1/Q0 −2RQ rQ 1/Q0,
it will be possible for the fittings to overlap, as corrected by the Lindqvist formula,
equation (5). The further reduction of mean free-path can be written as

D(1/Q)=g
2p+

0− g
1/Q0 −2R

2R

[1−exp(−Q0r)](2R/2pr) dU dr. (7)

Replacing exp (−Qr) by (1−Qr), an approximate expression is obtained:

D(1/Q)=2R−8R2Q0. (8)

From equations (6) and (8), the total reduction of mean free-path is

Dlf =4R−8R2Q0. (9)

Replacing 2R by the mean fitting dimension Df , the corrected fitting density
becomes

Q0=[(1/Q0)−2Df +2Q0D2
f ]−1. (10)

Combining the new correction with that of Lindqvist, equation (5), the fitting
density can be written as

Q'= [1/aQ0)−2Df +2Q0D2
f ]−1, (11)

in which a is the correction factor given by Lindqvist,

a=1+(8Q0Df /3p)− (Q2
0D2

f /2), (12)

and Q0 is calculated by the Kuttruff formula, equation (3). The effect of the new
correction depends on Df and Q0. For example, if Q0 =0·1 m−1 and Df =1 m, the
fitting mean free-path will decrease from 10 m to 8·2 m, and the fitting density will
increase to 0·122 m−1, which is 22% larger than Q0. As is the case for equation
(3), equation (11) is only valid for high frequency.

T 1

Fitting densities (in m−1) calculated by various methods (see text)

Df =0·5 m Df =1 m Df =2 m Df =5 m
ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV

Q0 QL Q0 Q' QL Q0 Q' QL Q0 Q' QL Q0 Q'

0·05 0·051 0·053 0·054 0·051 0·055 0·056 0·052 0·061 0·064 0·055 0·080 0·094
0·10 0·102 0·110 0·113 0·104 0·122 0·128 0·108 0·147 0·165 0·118 0·200 0·288
0·15 0·155 0·174 0·181 0·159 0·201 0·218 0·167 0·259 0·314 0·187 0·240 0·351
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Table 1 shows some typical fitting densities corrected by equations (5) and (11).
The first column gives the Kuttruff Q0. The other columns show the corrected
values for Df =0·5, 1, 2, and 5 m, respectively. In each case, the left value is QL

from the Lindqvist formula, equation (5), the middle value is Q0 from equation
(10) and the right value is Q' from equation (11). We can see that the differences
in fitting density are small for small Q0 and Df , but that they are large when Df

and Q0 are large. For the extreme case of Q0 =0·15 m−1 and Df =5 m, Q' is 134%
greater than Q0. This can be explained by considering a hypothetical region fitted
with Nf spherical fittings of diameter 5 m. The dimensions of the region are
100×100×100 m3. The surface area of a sphere is Sv = pD2

f =78·54 m2; from the
Kuttruff formula, Nf =4VQ0/Sv =7639·4. If the spheres are uniformly distributed
in three dimensions, the distance between the centers of the two spheres is
100/7639·41/3 =5·08 m. This is just slightly larger than the sphere diameter; the
mean free-path between the fittings is much smaller than 1/Q0 =1/0·15=6·67 m,
so 1/Q'=1/0·351=2·85 m, calculated using equation (11), seems reasonable.
This analysis assumes a uniform distribution of fittings; it is clear that the spheres
could not in fact be distributed randomly in this region.

4. EXPERIMENTAL METHODS

This section discusses the experimental methodology used in the validation of
the new theoretical models, and the instrumentation involved. Tests were
performed in an anechoic chamber and in a test enclosure—both considered as
1:8-scale models—using the Maximum Length Sequence System Analyzer
(MLSSA). The principles of scale modelling, as applied to industrial workrooms,
are discussed in detail elsewhere [13]. In a 1:8-scale model, sound frequencies are
scaled up 8 times. The dimensions of all fittings are scaled by 1/8, in which case
wavelength-to-dimension ratios are preserved, and fitting density scales up by 8.
A scale factor of 8 was chosen because the mean dimension of the objects used
as scale-model fittings corresponded to the mean dimensions of typical large,
full-scale fittings in industrial workrooms. Also, the anechoic chamber
corresponded to a sufficiently large, unbounded region at 1:8 scale. Furthermore,
a scale factor of 8 has the advantage that model-scale octave-band frequencies,
when scaled to full-size eqivalents, correspond to standard octave-bands. In most
industrial applications, the 125–4000 Hz octave bands are most important. These
correspond to a 1:8-scale-model frequency range of 1000–32000 Hz—the range
involved in all model tests. No attempt was made to accurately scale air absorption
which was, therefore, excessive in the scale model. However, this does not affect
results based on comparisons of prediction with experiment, as in this paper, as
long as predictions are done using air-absorption values applicable to the air
absorption present in the experiments.

4.1.  

Measurements were made in different test environments using the same
measurement system. The MLSSA system generated test signals which were
amplified by an MB100 power amplifier and radiated by the scale-model sound
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source. Sound waves propagating in the test environment were received by a Bruel
& Kjaer 4135 microphone; the resulting signals were amplified by a Bruel & Kjaer
2609 measuring amplifier and analyzed by MLSSA system.

The model sound source consisted of a 75-mm diameter, Realistic 40-1289A
mid-range tweeter loudspeaker with a reversed fibre-glass cone narrowing to a
3-mm diameter opening attached to it to make the source omni-directional over
the test frequency range. The sound power of the loudspeaker was calculated from
sound-pressure levels measured in a free-field environment.

4.2. - 

In order to model sound propagation in fitted regions, empty 18·9-l
mineral-water bottles were used as fittings. These hard-plastic bottles were 40 cm
high and 27·5 cm in diameter (3·2 by 2·2 mFS—FS means full-scale equivalent
value). The bottles were capped to prevent their acting as Helmholtz resonators.
The reason for choosing these bottles was that their size was suitable for 1:8 scale
modelling of industrial fittings of large dimension, and because the absorption
coefficient of the bottle surface was low. The surface area, Sv , of one bottle was
approximately 0·46 m2 (29·4 mFS2); the mean dimension was 0·3 m (2·4 mFS).

4.3.  

4.3.1. Anechoic chamber

A fully anechoic chamber was used as a test environment to approximate an
infinite region. Its dimensions were 4·7×4·1×2·4 m high (37·6×32·8 ×
19·2 mFS high when considered as a 1:8-scale model). Sound-propagation tests
were performed in the empty anechoic chamber to confirm that it was an excellent
approximation to a free field at the model test frequencies, as long as the source
and receiver were not close to the chamber walls. Similarly, the anechoic chamber,
fitted with water bottles, was used to study sound propagation in an approximately
infinite fitted region. In order to validate its use, ray tracing was used to compare
the sound field in the fitted chamber with that in an approximately infinite fitted
region. An infinite region was approximated as a room with dimensions of
100×100×100 m. The source was located at the middle of both regions. The
differences in sound-pressure levels in the two regions were less than 1 dB if the
source was at the middle of the chamber, and if the source/receiver distance was
less than half the distance to the chamber surfaces. However, the differences were
large when the source or the receiver was near any room surface; the differences
increased with fitting density, and with the source/receiver distance, by up to 3 dB
at r=2 m with Q=0·5 m−1. To avoid problems associated with the finite size of
the chamber, the source/receiver distance was limited to 1·25 m and the source was
always located in the middle of the chamber. Used in this way, the anechoic
chamber was an adequate approximation to an infinite region.

Tests were performed in the anechoic chamber when empty, and when fitted
with three fitting densities involving 81, 162 or 243 bottles. Given the
anechoic-chamber volume of 46·2 m3, and using the Kuttruff formula of equation
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Figure 3. The fitted, 5-mFS-high, 1:8-scale model with absorbent ceiling. The front doors are open
and the left roof tilted up to reveal the inside.

(3), these corresponded to fitting densities of 0·2 m−1 (0·025 mFS−1), 0·4 m−1

(0·05 mFS−1), and 0·6 −1 (0·075 mFS−1), respectively. These full-scale fitting
densities are typical of low-density and moderately-densely-fitted workrooms [7].
It was not feasible to test higher densities.

4.3.2. Scale-model workroom

Tests were also done in a more realistic environment—a 1:8-scale-model
industrial workroom. Figure 3 is a photograph of the model. It was 3·75m
(30 mFS) long, 1·875 m (15 mFS) wide, and either 1·875 m (15 mFS) or 0·625 m
(5 mFS) high. The vertical walls and the ceiling were made of varnished plywood,
and the floor was of concrete. The average absorption coefficients of the surfaces
were determined by comparing sound-progation curves measured in the empty
model with those predicted by ray tracing for various coefficient values until the
best-fit coefficient was found.

5. EMPIRICAL DETERMINATION OF FREQUENCY-VARYING FITTING
DENSITY

5.1. 

This section presents details of experiments performed in the anechoic chamber
to determine the fitting density in fitted regions and to derive a relationship for
the variation of fitting density with frequency. As discussed in section 4.3, the
chamber was fitted with 81, 162 or 243 bottles; these were arranged randomly in
the chamber in three dimensions. It was found that when the number of bottles
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was large, it was impossible to arrange the bottles completely randomly, since
sometimes bottles were too close. Octave-band sound-pressure levels were
measured at 8–20 positions at each source/receiver distance, and average levels
calculated.

5.2. - 

Regarding sound propagation in fitted regions, we can differentiate between
sound-pressure levels measured at a receiver location in two cases—when the direct
sound is not blocked, and when it is blocked by fittings. The total sound energy
is the sum of two parts—the scattered part and the unscattered part. The
unscattered sound-energy density Eu was derived by Kuttruff [8] as

Eu =W exp(−rQ)/4pr2c=EQ=0 exp(−rQ), (13)

in which EQ=0 =W/4pr2c;W is the source sound power, and c is the sound speed
in air. The sound energy can be related to the sound-pressure level Lp, using
E=10Lp/10/c. Thus, equation (13) can be rewritten as

Eu =10Lp ,u/10/c=(10Lp ,Q=0/10/c) exp(−rQ). (14)

Following are the definitions of some relevant sound energies. EQ=0: the sound
energy measured in a free field with Q=0 m−1—that is, when there is direct sound
and no scattered sound. Et : the total sound energy. In a fitted room this is the
sum of the unscattered and scattered energies. Eu : the unscattered part of total
sound energy. Es : the scattered part of the total sound energy. Eb : the sound energy
for the case when there are one or more fittings blocking the direct sound. Eb is
not the same as Es , because the fittings are not dimensionless. They block not only
the direct sound, but also some scattered sound; thus, Eb is generally less than Es .
Enb : the sound energy for the case when there is no fitting blocking the direct
sound.

The following relationships between these sound-energy components exist:
Et =Eu +Es ; Es =Enb −EQ=0. Thus, the unscattered sound energy can be
expressed as Eu =Et −Es =EQ=0 −Enb +Et . Since Eu =EQ=0 exp(−rQ), dividing
both sides of by EQ=0 results in exp(−rQ)=1−(Enb −Et )/EQ=0. Thus, the fitting
density Q is dependent on three measurable quantities which all vary with
frequency. The variation of Q with frequency is given by

Q(f)= −(1/r) ln {1− [(Enb (f)−Et (f)]/EQ=0(f)}. (15)

Figure 4 shows the values of Q(f) derived, using equation (15), from the
measurements in the fitted anechoic chamber with the three densities of fittings.
Table 2 gives the corresponding fitting densities calculated using the Kuttruff
formula (Q0, equation (3)), from the Lindqvist corrected formula (QL , equation
(5)), and by the new formula (Q', equation (11)). These values are also shown in
Figure 4. The fitting density varies significantly with frequency. Measured fitting
densities are much higher than the Kuttruff fitting density Q0 at high frequencies,
much lower at low frequencies, but equal to the Kuttruff values at some
intermediate frequencies. The Lindqvist correction formula gives approximately
the same results as the Kuttruff formula, since the correction involved in QL
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increases the fitting-density values by less than 8% in these cases. The values
obtained by the new correction formula agree well with those measured at high
frequencies, as expected.

5.3.     Q(f)

According to Figure 4, a non-linear model must be used to express the
relationship between fitting density and frequency. After considering several
models, the following model was chosen:

Q(f)=Qa/(1+Af0/f), (16)

in which Qa =Q(a), f is frequency, f0 is a hypothetical fundamental frequency
which depends on the mean fitting dimension Df , with f0 = c/Df , and c is sound
speed in air. In our experiments with water bottles, Df =0·3 m and c=344 m/s,
so f0 =1136 Hz. An estimate for A in equation (16) can be found from
experimental data using regression techniques. The resulting best-fit variation of
Q with frequency can be approximated by

Q(f)=Qa/(1+1·2f0/f). (17)

In Figure 5, the measured data for Q(f)/Aa are compared with the prediction by
equation (17). We can see that equation (17) is a reasonable model of the variation
of average fitting density with frequency.

Note that, with the hypothetical fundamental frequency included, since f0

depends on the fitting dimension, this model in principle allows that parameter to
be taken into consideration. Unfortunately, it was not feasible to perform
experiments with more than one fitting dimension to verify the relationship.

6. EXPERIMENTAL VALIDATION

Comparisons were made between predictions and measurements of sound
propagation (SP—the received sound-pressure level minus the source sound-
power level, in decibels) in a 1:8-scale-model industrial workroom and in a full-size
machine shop. The objective was to validate the correction formula for fitting
density, equation (11), and the model of frequency-varying fitting density,
equation (17).

T 2

Fitting densities (in m−1) relevant to the tests in the
fitted anechoic chamber calculated by three methods

(see text). n is the number of bottles

n Q0 QL Q'

81 0·2 0·205 0·232
162 0·4 0·420 0·541
243 0·6 0·643 0·944
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Figure 4. Variation of fitting density Q with frequency as calculated from experimental data using
equation (15): (a) Q0 =0·2 mFS−1; (b) Q0 =0·4 mFS−1; (c) Q0 =0·6 mFS−1. Also shown in each case
are the fitting densities Q0 , QL and Q'.

6.1. - 

Experiments were done in the 1:8-scale model, configured as a typical industrial
workroom with an acoustically treated (covered with 50-mmFS-thick glass fibre)
ceiling at a height of 5 mFS. The source was 1·0 mFS high, at half width, and at
2·5 mFS from one end wall. Receiver positions were 1·5 mFS high, at half width,
and at source/receiver distances of 1, 2, 5, 10, 15, 20 and 25 mFS. The fittings
consisted of 31 bottles placed upside-down in a uniform distribution on the
floor—as shown in Figure 3—with a 1-mFS-high void above. The fitting density
calculated by the Kuttruff was 0·1 mFS−1; the corrected value calculated by
equation (11) was 0·183 mFS−1.

First the empty room was measured and predicted, to determine the effective
ceiling-absorption coefficients using the best-fit method; the results, along with the
other input parameter values, are shown in Table 3.
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Figure 5. Variation of Q/Qa with frequency: +, as determined from experimental data using
equation (15); ——, as predicted by equation (17).

Figure 6 compares the measured results at 4000 Hz with those predicted by ray
tracing using Q0 and Q(f). The differences between the sound-propagation values
predicted using Q0 and Q(f) increase with source/receiver distance to about 3·5 dB.
Results are similar at lower frequencies, though the magnitudes of the differences
increase with frequency, as expected. The sound-propagation curves predicted
using Q(f) are in excellent agreement with the measured curves at all distances and
frequencies. The validity of the new correction formula, equation (11), and the
model for Q(f), equation (17), are supported by these experimental results.

6.2.  

Comparisons were made with data from Hodgson’s work [10], which involved
ray-tracing prediction of sound-propagation curves in a fitted machine shop. The
dimensions of the shop were 46×15×7·2 m high. The floor of the room was of
concrete, its walls were made of unpainted blockwork, and its ceiling was of typical

T 3

The parameters used in prediction for the scale-model workroom with uniformly
distributed fittings on the floor. m is the air-absorption exponent

Octave band (Hz)
ZXXXXXXXXXXXCXXXXXXXXXXXV

Parameter 250 500 1000 2000 4000

m (Np/m) 0·00035 0·00073 0·0021 0·0075 0·025
a (ceiling) 0·40 0·45 0·40 0·40 0·30
a (other surfaces) 0·05 0·05 0·05 0·05 0·05
a (fittings) 0·01 0·02 0·02 0·03 0·04
Q0 (mFS−1) 0·1 0·1 0·1 0·1 0·1
Q(f) (mFS−1) 0·109 0·137 0·157 0·169 0·176
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Figure 6. 4000-HzFS octave-band sound-propagation curves for the fitted 1:8-scale model:
W, measured; predicted by ray tracing with fitting densities Q0 (· · · · ·) and Q(f) (——).

steel-deck construction (consisting of corrugated metal inside, insulation, and a
vapour barrier and gravel outside). The roof was supported by metal trusswork.
The average octave-band absorption coefficients of the surfaces were estimated
from measurements of reverberation time in nominally-empty buildings of the
same construction, and have been found to vary little from one building to another
[14]. The resulting coefficients were 0·12 at 250 Hz, 0·1 at 500 Hz, 0·08 at 1000 Hz,
and 0·06 at 2000 and 4000 Hz.

The machine shop contained a total of 63 major fittings, distributed fairly
uniformly over the floor area. The fittings included machine tools and other
equipment, work benches, cabinets, and stock piles, with an average fitting height
of about 1·5 m. The total fitting surface area, as calculated from the dimensions
of rectangular boxes that would just enclose the fittings, was 675·5 m2; thus,
Q0 =0·16 m−1 in the fitted zone, according to the Kuttruff formula. The fitting
density of the upper region, which was essentially empty but contained a mobile
crane, lighting fixtures, and the roof trusswork, was considered by Hodgson [10]
to be 0·03 m−1, with absorption coefficient 0·05. The input parameters used in his
predictions are listed in Table 4.

Measurements of sound propagation were made by Hodgson [10] in the machine
shop in octave bands from 250 to 4000 Hz. The sound source was located at 5 m
from one end wall, at half width and 1·5 m above the floor. The receivers were
at the same height and at distances of 1, 2, 5, 10, 15, 20, 25, and 30 m from the
source along the room center line. By comparing measured SPs with those
predicted by ray tracing, Hodgson [10] found that, using a fitting absorption
coefficient of 0·1, the best-fit fitted-region density of 0·23 m−1 gave excellent
agreement with experiment at all frequencies.
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T 4

Values of parameters used by Hodgson [10] for ray-tracing prediction of sound
propagation in the machine shop

Octave band (Hz)
ZXXXXXXXXXXCXXXXXXXXXXV

Parameter 250 500 1000 2000 4000

m (Np/m) 0·0003 0·0005 0·001 0·003 0·006
a (empty room) 0·12 0·10 0·08 0·06 0·06
a (fitted room) 0·21 0·18 0·15 0·14 0·14
Q (upper zone) (mFS−1) 0·03 0·03 0·03 0·03 0·03
Q (lower zone) (mFS−1) 0·23 0·23 0·23 0·23 0·23
af (upper zone) 0·05 0·05 0·05 0·05 0·05
af (lower zone) 0·1 0·1 0·1 0·1 0·1

Let us now apply the corrected fitting formula to the above data. The mean
fitting dimension was calculated from the dimensions of all of the fittings to be
Df =1·15 m, corresponding to Q'=0·255 m−1. This is similar to the value of
0·23 m−1 found by the best-fit method [10], supporting the validity of the correction
formula, equation (11). The variation of fitting density with frequency Q(f)
calculated from equation (17) is given in Table 5.

By comparing prediction with experiment for different values of fitting
absorption coefficient, the best-fit values shown in Table 5 were found. Note that
these decrease with increasing frequency. This suggests that low-frequency
absorption mechanisms (such as panels and resonators) dominate high-frequency
ones (such as surface porosity), which is not surprising in the case of industrial
equipment. Note also that, at all frequencies, the product of frequency-varying
fitting density and fitting absorption coefficient is close to the frequency-invariant
fitting density of 0·23 m−1 found by Hodgson [10]; this lends credibility to the
approach of Akil and Oldham [11, 12].

The 500-Hz measured and predicted sound-propagation curves are compared
in Figure 7. Also shown is the curve predicted using Q=0·23 m−1 and fitting
absorption coefficient 0·1 as used by Hodgson [10]. The results are very similar
at the other frequencies. The agreement between the three curves is excellent at
all frequencies and distances. The agreement is as good using Q(f) and the best-fit,
frequency-varying fitting-absorption coefficients as that obtained by Hodgson [10]

T 5

The parameters used for ray-tracing predictions using Q(f)

Octave band (Hz)
ZXXXXXXXXXXCXXXXXXXXXXV

Parameter 250 500 1000 2000 4000

Average Q(f) (mFS−1) 0·100 0·142 0·182 0·213 0·232
Average af 0·20 0·15 0·12 0·10 0·10
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Figure 7. 500-Hz octave-band sound-propagation curves for the fitted machine shop:
W, measured; predicted by ray tracing using fitting densities/absorption coefficients 0·142 m−1/0·15
(· · · · · ·) and 0·23 m−1/0·1 (——).

using constant fitting-absorption coefficient 0·1 and constant fitting density
0·23 m−1. Since the fitting absorption coefficient cannot at present be measured
directly, it is not possible to say which set of prediction parameters best represents
reality, only that they give equally good agreement with experiment.

7. SUMMARY AND CONCLUSION

A correction formula, equation (11), for calculating the fitting density in the case
of large fitting dimensions has been derived, and the magnitude of the correction
investigated. The variation of fitting density with frequency was found from
sound-propagation measurements in the anechoic chamber. A model, equation
(17), to describe the variation, Q(f), was derived from these results using statistical
methods. The results suggest that the fitting density calculated by the Kuttruff
formula is only valid at some intermediate frequency. At low frequency, fitting
densities are smaller than those calculated by the Kuttruff formula; at high
frequencies, they are much greater.

The fitting-density models were validated by comparing ray-tracing predictions,
using the new parameter values, with experiments in a scale-model workroom and
in a full-size machine shop. The validation work strongly supports the new
fitting-density model. In the machine shop, the sound-propagation curves were in
excellent agreement with the measured values at all distances and frequencies. It
was shown that the sound-propagation curves predicted using the Kuttruff
formula only agree well with measurement for the cases of sparsely-fitted rooms,
or densely-fitted rooms at low frequencies, since in these cases the fitting-density
values calculated by the two methods are about same. However, for the case of
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densely-fitted rooms with large fittings, the fitting densities calculated using the
Kuttruff formula are too small to agree with those measured, especially at high
frequencies.

In deriving Q(f), the fitting dimension was taken into account by calculating a
fundamental frequency related to dimension. However, only one kind of fitting
was used in the project. Since it was not feasible to perform experiments with other
fitting dimensions in order to verify the relationship between fitting desity and
dimension, this model needs further validation—for example, by measurements in
the scale-model workroom with fittings of widely different dimensions, but the
same fitting density, and by more measurements in real workrooms.
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